Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Nat Commun ; 15(1): 2069, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453956

RESUMO

RNA-guided enzymes must quickly search a vast sequence space for their targets. This search is aided by chaperones such as Hfq, a protein that mediates regulation by bacterial small RNAs (sRNAs). How RNA binding proteins enhance this search is little known. Using single-molecule Förster resonance energy transfer, we show that E. coli Hfq performs a one-dimensional scan in which compaction of the target RNA delivers sRNAs to sites distant from the location of Hfq recruitment. We also show that Hfq can transfer an sRNA between different target sites in a single mRNA, favoring the most stable duplex. We propose that compaction and segmental transfer, combined with repeated cycles of base pairing, enable the kinetic selection of optimal sRNA targets. Finally, we show that RNA compaction and sRNA transfer require conserved arginine patches. We suggest that arginine patches are a widespread strategy for enabling the movement of RNA across protein surfaces.


Assuntos
Proteínas de Escherichia coli , Pequeno RNA não Traduzido , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Arginina/metabolismo , Pequeno RNA não Traduzido/metabolismo , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
bioRxiv ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38260533

RESUMO

The production of new ribosomes requires proper folding of the rRNA and the addition of more than 50 ribosomal proteins. The structures of some assembly intermediates have been determined by cryo-electron microscopy, yet these structures do not provide information on the folding dynamics of the rRNA. To visualize the changes in rRNA structure during ribosome assembly in E. coli cells, transcripts were pulse-labeled with 4-thiouridine and the structure of newly made rRNA probed at various times by dimethyl sulfate modification and mutational profiling sequencing (4U-DMS-MaPseq). The in-cell DMS modification patterns revealed that many long-range rRNA tertiary interactions and protein binding sites through the 16S and 23S rRNA remain partially unfolded 1.5 min after transcription. By contrast, the active sites were continually shielded from DMS modification, suggesting that these critical regions are guarded by cellular factors throughout assembly. Later, bases near the peptidyl tRNA site exhibited specific rearrangements consistent with the binding and release of assembly factors. Time-dependent structure-probing in cells suggests that many tertiary interactions throughout the new ribosomal subunits remain mobile or unfolded until the late stages of subunit maturation.

3.
Nucleic Acids Res ; 52(2): 872-884, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38000388

RESUMO

The glmS ribozyme riboswitch, located in the 5' untranslated region of the Bacillus subtilis glmS messenger RNA (mRNA), regulates cell wall biosynthesis through ligand-induced self-cleavage and decay of the glmS mRNA. Although self-cleavage of the refolded glmS ribozyme has been studied extensively, it is not known how early the ribozyme folds and self-cleaves during transcription. Here, we combine single-molecule fluorescence with kinetic modeling to show that self-cleavage can occur during transcription before the ribozyme is fully synthesized. Moreover, co-transcriptional folding of the RNA at a physiological elongation rate allows the ribozyme catalytic core to react without the downstream peripheral stability domain. Dimethyl sulfate footprinting further revealed how slow sequential folding favors formation of the native core structure through fraying of misfolded helices and nucleation of a native pseudoknot. Ribozyme self-cleavage at an early stage of transcription may benefit glmS regulation in B. subtilis, as it exposes the mRNA to exoribonuclease before translation of the open reading frame can begin. Our results emphasize the importance of co-transcriptional folding of RNA tertiary structure for cis-regulation of mRNA stability.


Assuntos
Bacillus subtilis , RNA Bacteriano , RNA Catalítico , Riboswitch , Bacillus subtilis/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Domínio Catalítico , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Catalítico/química
4.
Biomolecules ; 13(6)2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37371531

RESUMO

Ribosomal subunits begin assembly during transcription of the ribosomal RNA (rRNA), when the rRNA begins to fold and associate with ribosomal proteins (RPs). In bacteria, the first steps of ribosome assembly depend upon recognition of the properly folded rRNA by primary assembly proteins such as S4, which nucleates assembly of the 16S 5' domain. Recent evidence, however, suggests that initial recognition by S4 is delayed due to variable folding of the rRNA during transcription. Here, using single-molecule colocalization co-transcriptional assembly (smCoCoA), we show that the late-binding RP S12 specifically promotes the association of S4 with the pre-16S rRNA during transcription, thereby accelerating nucleation of 30S ribosome assembly. Order of addition experiments suggest that S12 helps chaperone the rRNA during transcription, particularly near the S4 binding site. S12 interacts transiently with the rRNA during transcription and, consequently, a high concentration is required for its chaperone activity. These results support a model in which late-binding RPs moonlight as RNA chaperones during transcription in order to facilitate rapid assembly.


Assuntos
RNA Ribossômico , Proteínas Ribossômicas , RNA Ribossômico 16S/genética , Proteínas Ribossômicas/metabolismo , RNA Ribossômico/genética , Ribossomos/metabolismo
5.
Mol Cell ; 83(9): 1489-1501.e5, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37116495

RESUMO

Small ribonucleoproteins (sRNPs) target nascent precursor RNAs to guide folding, modification, and splicing during transcription. Yet, rapid co-transcriptional folding of the RNA can mask sRNP sites, impeding target recognition and regulation. To examine how sRNPs target nascent RNAs, we monitored binding of bacterial Hfq⋅DsrA sRNPs to rpoS transcripts using single-molecule co-localization co-transcriptional assembly (smCoCoA). We show that Hfq⋅DsrA recursively samples the mRNA before transcription of the target site to poise it for base pairing with DsrA. We adapted smCoCoA to precisely measure when the target site is synthesized and revealed that Hfq⋅DsrA often binds the mRNA during target site synthesis close to RNA polymerase (RNAP). We suggest that targeting transcripts near RNAP allows an sRNP to capture a site before the transcript folds, providing a kinetic advantage over post-transcriptional targeting. We propose that other sRNPs may also use RNAP-proximal targeting to hasten recognition and regulation.


Assuntos
Proteínas de Escherichia coli , Pequeno RNA não Traduzido , Proteínas de Bactérias/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , RNA Mensageiro/metabolismo , Pareamento de Bases , RNA Bacteriano/metabolismo , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica
6.
Proc Natl Acad Sci U S A ; 119(47): e2208780119, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36375072

RESUMO

RNA-binding proteins contain intrinsically disordered regions whose functions in RNA recognition are poorly understood. The RNA chaperone Hfq is a homohexamer that contains six flexible C-terminal domains (CTDs). The effect of the CTDs on Hfq's integrity and RNA binding has been challenging to study because of their sequence identity and inherent disorder. We used native mass spectrometry coupled with surface-induced dissociation and molecular dynamics simulations to disentangle the arrangement of the CTDs and their impact on the stability of Escherichia coli Hfq with and without RNA. The results show that the CTDs stabilize the Hfq hexamer through multiple interactions with the core and between CTDs. RNA binding perturbs this network of CTD interactions, destabilizing the Hfq ring. This destabilization is partially compensated by binding of RNAs that contact multiple surfaces of Hfq. By contrast, binding of short RNAs that only contact one or two subunits results in net destabilization of the complex. Together, the results show that a network of intrinsically disordered interactions integrate RNA contacts with the six subunits of Hfq. We propose that this CTD network raises the selectivity of RNA binding.


Assuntos
Proteínas de Escherichia coli , Fator Proteico 1 do Hospedeiro , Proteínas Intrinsicamente Desordenadas , Pequeno RNA não Traduzido , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Fator Proteico 1 do Hospedeiro/metabolismo , Espectrometria de Massas , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo
7.
J Mol Biol ; 434(18): 167776, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35934049

RESUMO

The Sm protein Hfq chaperones small non-coding RNAs (sRNAs) in bacteria, facilitating sRNA regulation of target mRNAs. Hfq acts in part by remodeling the sRNA and mRNA structures, yet the basis for this remodeling activity is not understood. To understand how Hfq remodels RNA, we used single-molecule Förster resonance energy transfer (smFRET) to monitor conformational changes in OxyS sRNA upon Hfq binding. The results show that E. coli Hfq first compacts OxyS, bringing its 5' and 3 ends together. Next, Hfq destabilizes an internal stem-loop in OxyS, allowing the RNA to adopt a more open conformation that is stabilized by a conserved arginine on the rim of Hfq. The frequency of transitions between compact and open conformations depend on interactions with Hfqs flexible C-terminal domain (CTD), being more rapid when the CTD is deleted, and slower when OxyS is bound to Caulobacter crescentus Hfq, which has a shorter and more stable CTD than E. coli Hfq. We propose that the CTDs gate transitions between OxyS conformations that are stabilized by interaction with one or more arginines. These results suggest a general model for how basic residues and intrinsically disordered regions of RNA chaperones act together to refold RNA.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Fator Proteico 1 do Hospedeiro , Dobramento de RNA , RNA Bacteriano , Pequeno RNA não Traduzido , Caulobacter crescentus/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/metabolismo , Ligação Proteica , RNA Bacteriano/química , Pequeno RNA não Traduzido/química , Proteínas Repressoras/química , Imagem Individual de Molécula
8.
Methods Mol Biol ; 2518: 271-289, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35666451

RESUMO

RNA-guided regulation of gene expression is found in all cell types. In this mode of regulation, antisense interactions between the regulatory RNA and its target are typically facilitated by a protein partner. Single-molecule fluorescence microscopy is a powerful tool for dissecting the conformational states and intermediates that contribute to target recognition. This chapter describes protocols for studying target recognition by bacterial small RNAs and their chaperone Hfq on the single-molecule level, using a total internal reflection fluorescence microscope. The sections cover the design of suitable RNA substrates for sRNA-mRNA annealing reactions, preparation of internally labeled mRNA for detecting conformational changes in the target, and key steps of the data analysis. These protocols can be adapted to other RNA-binding proteins that chaperone RNA interactions.


Assuntos
Proteínas de Escherichia coli , Pequeno RNA não Traduzido , Proteínas de Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/genética , Chaperonas Moleculares/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/genética
9.
Nat Commun ; 13(1): 2449, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508531

RESUMO

Hundreds of bacterial small RNAs (sRNAs) require the Hfq chaperone to regulate mRNA expression. Hfq is limiting, thus competition among sRNAs for binding to Hfq shapes the proteomes of individual cells. To understand how sRNAs compete for a common partner, we present a single-molecule fluorescence platform to simultaneously visualize binding and release of multiple sRNAs with Hfq. We show that RNA residents rarely dissociate on their own. Instead, clashes between residents and challengers on the same face of Hfq cause rapid exchange, whereas RNAs that recognize different surfaces may cohabit Hfq for several minutes before one RNA departs. The prevalence of these pathways depends on the structure of each RNA and how it interacts with Hfq. We propose that sRNA diversity creates many pairwise interactions with Hfq that allow for distinct biological outcomes: active exchange favors fast regulation whereas co-residence of dissimilar RNAs favors target co-recognition or target exclusion.


Assuntos
Proteínas de Escherichia coli , Pequeno RNA não Traduzido , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/química , Chaperonas Moleculares/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/metabolismo
11.
Trends Biochem Sci ; 46(11): 889-901, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34176739

RESUMO

Ribonucleoprotein (RNP) assembly typically begins during transcription when folding of the newly synthesized RNA is coupled with the recruitment of RNA-binding proteins (RBPs). Upon binding, the proteins induce structural rearrangements in the RNA that are crucial for the next steps of assembly. Focusing primarily on bacterial ribosome assembly, we discuss recent work showing that early RNA-protein interactions are more dynamic than previously supposed, and remain so, until sufficient proteins are recruited to each transcript to consolidate an entire domain of the RNP. We also review studies showing that stable assembly of an RNP competes against modification and processing of the RNA. Finally, we discuss how transcription sets the timeline for competing and cooperative RNA-RBP interactions that determine the fate of the nascent RNA. How this dance is coordinated is the focus of this review.


Assuntos
RNA Ribossômico , RNA , RNA/química , RNA Ribossômico/química , Proteínas de Ligação a RNA/metabolismo
12.
Mol Cell ; 81(9): 1988-1999.e4, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33705712

RESUMO

Bacterial small RNAs (sRNAs) regulate the expression of hundreds of transcripts via base pairing mediated by the Hfq chaperone protein. sRNAs and the mRNA sites they target are heterogeneous in sequence, length, and secondary structure. To understand how Hfq can flexibly match diverse sRNA and mRNA pairs, we developed a single-molecule Förster resonance energy transfer (smFRET) platform that visualizes the target search on timescales relevant in cells. Here we show that unfolding of target secondary structure on Hfq creates a kinetic energy barrier that determines whether target recognition succeeds or aborts before a stable anti-sense complex is achieved. Premature dissociation of the sRNA can be alleviated by strong RNA-Hfq interactions, explaining why sRNAs have different target recognition profiles. We propose that the diverse sequences and structures of Hfq substrates create an additional layer of information that tunes the efficiency and selectivity of non-coding RNA regulation in bacteria.


Assuntos
Escherichia coli K12/metabolismo , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/metabolismo , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Cinética , Microscopia de Fluorescência , Conformação de Ácido Nucleico , Estabilidade Proteica , Estrutura Secundária de Proteína , Desdobramento de Proteína , Estabilidade de RNA , RNA Bacteriano/genética , RNA Mensageiro/genética , Pequeno RNA não Traduzido/genética , Análise de Célula Única , Relação Estrutura-Atividade
14.
Proc Natl Acad Sci U S A ; 117(22): 12080-12086, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32430319

RESUMO

Small ribozymes such as Oryza sativa twister spontaneously cleave their own RNA when the ribozyme folds into its active conformation. The coupling between twister folding and self-cleavage has been difficult to study, however, because the active ribozyme rapidly converts to product. Here, we describe the synthesis of a photocaged nucleotide that releases guanosine within microseconds upon photosolvolysis with blue light. Application of this tool to O. sativa twister achieved the spatial (75 µm) and temporal (≤30 ms) control required to resolve folding and self-cleavage events when combined with single-molecule fluorescence detection of the ribozyme folding pathway. Real-time observation of single ribozymes after photo-deprotection showed that the precleaved folded state is unstable and quickly unfolds if the RNA does not react. Kinetic analysis showed that Mg2+ and Mn2+ ions increase ribozyme efficiency by making transitions to the high energy active conformation more probable, rather than by stabilizing the folded ground state or the cleaved product. This tool for light-controlled single RNA folding should offer precise and rapid control of other nucleic acid systems.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Dobramento de RNA/fisiologia , RNA Catalítico/metabolismo , Nanotecnologia/métodos , Oryza/metabolismo
15.
Methods Mol Biol ; 2106: 19-39, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31889249

RESUMO

Diverse types of RNA-binding proteins chaperone the interactions of noncoding RNAs by increasing the rate of RNA base pairing and by stabilizing the final RNA duplex. The E. coli protein Hfq facilitates interactions between small noncoding RNAs and their target mRNAs. The chaperone and RNA annealing activity of Hfq and other RNA chaperones can be evaluated by determining the kinetics of RNA base pairing in the presence and absence of the protein. This chapter presents protocols for measuring RNA annealing kinetics using electrophoretic gel mobility shift assays (EMSA), stopped-flow fluorescence, and fluorescence anisotropy. EMSA is low cost and can resolve reaction intermediates of natural small RNAs and mRNA fragments, as long as the complexes are sufficiently long-lived (≥10 s) to be trapped during electrophoresis. Stopped-flow fluorescence can detect annealing reactions between 1 ms and 30 s and is best suited for measuring the rapid annealing of oligoribonucleotides. Fluorescence anisotropy reports the physical size of the complex and is well-suited for monitoring the association and dissociation of RNA from Hfq during the chaperone cycle.


Assuntos
Ensaio de Desvio de Mobilidade Eletroforética/métodos , Chaperonas Moleculares/metabolismo , RNA/metabolismo , Animais , Polarização de Fluorescência/métodos , Humanos , Chaperonas Moleculares/química , RNA/química , Estabilidade de RNA
16.
Nucleic Acids Res ; 48(1): 359-372, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31728529

RESUMO

Bacterial ribosome biogenesis and translation occur in the same cellular compartment. Therefore, a biochemical gate-keeping step is required to prevent error-prone immature ribosomes from engaging in protein synthesis. Here, we provide evidence for a previously unknown quality control mechanism in which the abundant ribosome assembly factor, RbfA, suppresses protein synthesis by immature Escherichia coli 30S subunits. After 30S maturation, RbfA is displaced by initiation factor 3 (IF3), which promotes translation initiation. Genetic interactions between RbfA and IF3 show that RbfA release by IF3 is important during logarithmic growth as well as during stress encountered during stationary phase, low nutrition, low temperature, and antibiotics. By gating the transition from 30S biogenesis to translation initiation, RbfA and IF3 maintain the fidelity of bacterial protein synthesis.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Iniciação Traducional da Cadeia Peptídica , Fator de Iniciação 3 em Procariotos/genética , Processamento de Proteína Pós-Traducional , Proteínas Ribossômicas/genética , Adaptação Fisiológica/genética , Antibacterianos/farmacologia , Temperatura Baixa , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Biogênese de Organelas , Fator de Iniciação 3 em Procariotos/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Estresse Fisiológico/genética
17.
Cell ; 179(6): 1370-1381.e12, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31761536

RESUMO

The synthesis of new ribosomes begins during transcription of the rRNA and is widely assumed to follow an orderly 5' to 3' gradient. To visualize co-transcriptional assembly of ribosomal protein-RNA complexes in real time, we developed a single-molecule platform that simultaneously monitors transcription and protein association with the elongating transcript. Unexpectedly, the early assembly protein uS4 binds newly made pre-16S rRNA only transiently, likely due to non-native folding of the rRNA during transcription. Stable uS4 binding became more probable only in the presence of additional ribosomal proteins that bind upstream and downstream of protein uS4 by allowing productive assembly intermediates to form earlier. We propose that dynamic sampling of elongating RNA by multiple proteins overcomes heterogeneous RNA folding, preventing assembly bottlenecks and initiating assembly within the transcription time window. This may be a common feature of transcription-coupled RNP assembly.


Assuntos
Ribonucleoproteínas/metabolismo , Transcrição Gênica , Fluorescência , Modelos Biológicos , Ligação Proteica , Estabilidade Proteica , Precursores de RNA/biossíntese , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Elongação da Transcrição Genética
19.
Nucleic Acids Res ; 47(15): 8301-8317, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31265110

RESUMO

Assembly factors provide speed and directionality to the maturation process of the 30S subunit in bacteria. To gain a more precise understanding of how these proteins mediate 30S maturation, it is important to expand on studies of 30S assembly intermediates purified from bacterial strains lacking particular maturation factors. To reveal the role of the essential protein Era in the assembly of the 30S ribosomal subunit, we analyzed assembly intermediates that accumulated in Era-depleted Escherichia coli cells using quantitative mass spectrometry, high resolution cryo-electron microscopy and in-cell footprinting. Our combined approach allowed for visualization of the small subunit as it assembled and revealed that with the exception of key helices in the platform domain, all other 16S rRNA domains fold even in the absence of Era. Notably, the maturing particles did not stall while waiting for the platform domain to mature and instead re-routed their folding pathway to enable concerted maturation of other structural motifs spanning multiple rRNA domains. We also found that binding of Era to the mature 30S subunit destabilized helix 44 and the decoding center preventing binding of YjeQ, another assembly factor. This work establishes Era's role in ribosome assembly and suggests new roles in maintaining ribosome homeostasis.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Homeostase , RNA Ribossômico 16S/metabolismo , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Subunidades Ribossômicas Menores/metabolismo , Sequência de Bases , Sítios de Ligação , Microscopia Crioeletrônica , Proteínas de Escherichia coli/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/genética , Conformação de Ácido Nucleico , Ligação Proteica , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , Proteínas de Ligação a RNA/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores/genética , Subunidades Ribossômicas Menores/ultraestrutura , Subunidades Ribossômicas Menores de Bactérias/genética , Subunidades Ribossômicas Menores de Bactérias/ultraestrutura
20.
Methods Enzymol ; 623: 209-227, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31239047

RESUMO

In the cell, RNAs fold and begin to function as they are being transcribed. In contrast, in the laboratory, RNAs are typically studied after transcription is completed. Co-transcriptional folding can regulate the function of riboswitches and ribozymes and dictate the order of ribonucleoprotein assembly. Methods to observe and investigate RNA folding and activity during transcription are therefore desirable, yet synchronizing RNA polymerases and incorporating labels at specific sites for biophysical studies can be challenging. A recent methodological advance has been to harness highly processive, engineered "super-helicases" to unwind hybrid RNA-DNA duplexes, thereby releasing the RNA 5'-3'. When combined with single-molecule fluorescence detection, RNA folding and concomitant activity can be studied in vitro in a manner that mimics vectorial folding during transcription. Herein, we describe methods for designing and preparing fluorescently labeled RNA-DNA duplex substrates for sequential helicase-dependent RNA folding experiments.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Riboswitch , Corantes Fluorescentes/química , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Dobramento de RNA , RNA Helicases/química , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...